|  首页  |  资讯  |  评测  |  活动  |  学院  |  访谈  |  专题  |  杂志  |  产服  |  
您现在的位置:硅谷网> 学院> 论文>

超声技术在提取工艺和有机合成中的应用

2013-01-29 15:34 作者:李巨超 来源:硅谷网-《硅谷》杂志 HV: 编辑: 【搜索试试
  据《硅谷》杂志2012年第22期刊文称,超声波技术在化学实验及化工生产工艺研究和应用等方面都可发挥重要作用,可应用于有机合成、药物化学、环境化学、食品化工等许多领域。如运用超声提取法提取分离出中草药的有效成分,具有耗时短、提取率高、溶媒用量小等优点;超声技术在有机合成中的应用研究发展很快,应用广泛,超声波可以使许多有机合成在较温和的条件下进行,能够加速反应速率、提高产率、降低反应条件、缩短反应时间、改变反应历程等,能够显著降低成本,提高效益。
  关键词:超声技术;化学实验;化工;应用
  1概述
  近年来,超声波技术在化学实验和化工生产领域里的应用不断取得新的成果,应用范围越来越广泛,而且还具有很大的研究开发空间。超声波对某些化学反应具有显著的影响,其原理简要地分析是:由于通常的声波波长远远大于分子的直径,在液体中,超声波产生的特定频率的震荡,能够加剧溶液中物质分子等微粒的运动,在一定条件下也会增大其活化能,由于物理和化学作用的共同效应。结果导致温度变化更加剧烈,以至于在通常条件下不易发生的化学反应,获得了较为有利的反应条件,从而促进反应物微粒的裂解和新的自由基的形成,最终使化学反应速率大大提高,并降低了实验或生产成本。
  超声波技术的合理应用,不仅可以改进化学反应条件,避免采用高温高压,缩短反应时间,提高反应产率和选择性,而且还可以在一定范围内在改变反应的历程,例如在加成反应(亲电、亲核、环加成等)、取代反应(亲电、亲核)和氧化还原反应中都能适用。利用超声技术改变反应环境,可以大大降低反应难度和成本,提高实验或生产效益,具有很强的实用性。以下列举一些应用实例,说明其应用原理、方法及效果。
  2超声波在植物提取方面的应用
  2.1超声波提取的基本原理
  在液体介质中,超声波产生的强烈的空化效应、机械振动、高的加速度、乳化、扩散、击碎和搅拌作用,增大物质分子运动频率和速度,增强溶剂分子的活性,更加容易吸取植物中的有效成分。利用超声波可以提高提取速率,能提高植物有效成分的提出率,同时也就提高了药材的利用率,避免了高温对提取成分的影响,能够降低条件,节省时间,减小成本。超声技术已经越来越多地用于天然植物中药成分的提取,实践证明效果很好,应用前景广阔。
  在提取天然植物药用成分时,通常要使其细胞破碎。利用超声波产生的超常规的振动频率和振动幅度以及强烈的空化效应,同时产生的高速并且均匀的搅拌作用,能够促进植物药材细胞的快速分离,更加有利于溶剂渗透进药材细胞周边,植物药材的有效成分在溶剂中加快溶解,因此提高了提取效率。
  超声波是一种机械振动波,一般指频率为20kHz-50MHz的波段。超声波在通过介质传播时,会先后产生膨胀和压缩。超声波能产生巨大的能量?并通过介质形成很大的加速度。在液体介质(溶剂)中,这个能量增大及加速过程促使形成负压。当超声波产生的能量达到一定程度时,就造成急剧膨胀,此时会在液体介质中生成气泡或对液体的冲击而形成许多微小空穴,这些空穴在瞬间闭合时将产生高达3000MPa的巨大压力以形成空化作用。这种持续产生的作用力不断地冲击物质颗粒表面,使物质颗粒表面及缝隙中的可溶性活性成分迅速分离出来。在空化作用下,还促使植物体内细胞壁破裂,导致细胞内可溶物快速扩散到所接触的液体介质中。同时,由超声作用产生的能量以及在微粒间相互作用时产生的高温高压有利于形成活跃的游离基。
  超声波提取是利用其在溶液中产生的空化作用、机械效应以及热效应,以致增强介质的穿透力,并加快介质分子的运动速度,从而提高提取生物原料中有效成分的效率。
  其基本原理可以概括为:
  1)空化效应。在液体介质内部所溶解的数量不等的微气泡,在超声波的作用下产生强烈振动,当声压达到一定值时,气泡由于定向扩散而增大,形成共振腔,然后突然闭合,这就是超声波的空化效应。这种效应会在瞬间产生几千个大气压的压力,可使成植物细胞壁及整个生物体破裂,使包括有效成分在内的各种成分更容易分离。
  2)机械效应。超声波在溶液中以较快的频率产生较强的振动,显著增强了液体状介质渗透及扩散作用,这种作用即机械效应。同时,超声波在扩散时还产生较大的辐射压强,对所加工的样品形成强大冲击,造成细胞微粒突变,样品中的蛋白质变性;另外,在介质和悬浮体中产生加速度,由于两者的运动速度差异很大,以致在两者之间形成摩擦力,促使植物体内分子解聚加快,即可促进其所含有效成分的扩散。
  3)热效应。超声波在液体介质中的扩散中,伴随着能量的传播和扩散,介质将所吸收的能量在这个过程中会转变为热能,引起温度的升高,也就加快了植物中所含有效成分的溶解。
  2.2超声波在提取植物有效成分的应用实例
  茶叶所含的主要成分是茶多酚和多种香气物质,在医药和食品方面有重要用途,利用超声波作用,在较低的温度下就可以高效提取茶叶有效成分。茶多酚有多种提取方法,一直以来用得比较多的有溶剂提取法与沉淀法。在沉淀法中要使用大量的沉淀剂使得成本较高,因此通常大多采用溶剂提取法。在溶剂提取法的提取过程中,由于茶多酚被氧化而使产量降低,产品杂质较多,增大了分离的难度,所以应用也不够广泛。在溶剂法的基础上,应用超声波技术,将会显著改善提取茶多酚的条件,获得较好的提取效果。由于降低了提取温度、缩短了提取时间,所以不仅能够显著提高提取率,而且还提升了提取产品的质量。通过分析初步得出提取实验设置的条件是:配制适当的液体介质(80%乙醇),施加超声波振动,实验时间约为50min,提取剂(80%乙醇)用量大约是茶叶样品质量的8倍。对茶叶中茶多酚的浸提条件选择,通过正交实验归纳出最佳浸提条件为:乙醇浓度60%,浸提时间为45min,介质温度为80℃,浸提次数为1次。用20KHz超声波处理茶叶10min,茶多酚及儿茶素的总量均比水提法提取30min提高40%多,提取产物的性质与结构、茶多酚及儿茶素各组分的构成保持不变。
  天然植物产物中的活性物质的化学成分较为复杂,以生物碱、昔类、菇类和挥发油等为主要成分。针对不同的样品以及提取物,有各种不同的提取方法和复杂的条件,提取方案和工艺的不同,会造成提取产率和品质的很大差异。经过许多人的大量实验,确认可以将超声波应用于生物碱的提取中获得明显效果。例如从吐根中提取生物碱,用超声波提取30min比用索氏法5h所提取的碱量还多。超声波用于从黄连中提取小桑碱的常规碱性浸泡工艺中,超声提取30min所得到的小桑碱提取率比碱性浸泡2h高50%以上。同样,用超声波从曼陀罗、萝芙木、耶仆兰胡椒、金鸡纳、天麻、颠茄、罄粟、马钱、益母草、北草乌、延胡索、人工冬草等植物中提取各种生物碱等,提取产物的效率、产品质量以及提取总成本,都获得了令人满意的效果。
  2.3超声技术在有机合成中的应用
  超声波引入有机合成实验中可以使有机反应速率比普通加热快数十倍甚至数万倍,可以节约能源,缩短实验时间,提高反应产率;由于进行的是半微量反应实验,减少了污染,更符合当今“绿色化学”的要求。
  实践证明,超声波技术用于有机合成取得了显著效益,具有明显的优点:
  2.3.1由于加快了合成反应速率而使产率提高
  基于各种不同条件下或不同介质,以及应用于各种类型的提取样品,通过实验的观测和坚定,证明超声波都能显著加快反应速度,大幅度提高提取产率。如在超声辐射下,用KMnO4把PhCH2OH氧化成PhCHO,10min产率可达90%,而不用超声波时产率只有29%。而在超声波作用下,以Fe2(CO)9作催化剂,相对较无超声波时的常规实验,1-戊烯双键的转移速率增加约105倍,因此产率的增大是极为显著的。
  2.3.2降低反应条件,减少生产成本
  超声波产生的空化效应,使溶液中出现微区和极短时间高温高压,但对于整个反应体系的温度和压强并没有造成明显的改变。这对于有机合成生产是很有利的,不仅可以减少高温高压的危险,提高安全系数。同时可以降低生产设备成本操作技术难度。
  在均相溶液中进行的有机合成反应中,由于超声波产生的空化作用,其强大的能量可导致原有基团键的破裂,并形成活动性强的新的自由基,溶剂结构的迅速变化促进了反应速度的加快。这些有机金属化合物之所以能够起到催化作用,是由于在外力作用下,金属与配位体的结合键断裂,促进了化学反应。α-氰基乙酸乙酯含有α-H,在碱的催化下可与醛或酮发生缩合反应。传统的方法是用吡啶作催化剂加热回流,反应速率慢,产率低。利用超声波进行该反应,缩短了反应时间,大大提高了反应效率。通过对乙酸乙酯的水解实验研究发现:虽然在超声条件下反应的反应物的活化能也没有明显提高,然而在超声条件下的反应速度能提高6.2倍;在乙醇和水的双溶剂溶液中,超声波条件下的乙酸乙酯的水解速率为无超声条件的2.4倍,并且水解产物也能得到较高的纯度。
  在有机合成中常用高锰酸盐作氧化剂,但用高锰酸钾氧化烯烃制备邻二醇时往往发生深度氧化而伴随副反应,致使邻二醇的产率不超过50%。将超生作用引入到高锰酸钾氧化烯烃制备邻二醇的反应中,由于反应时间大大缩短,使邻二醇的产率明显提高。原理是在无超声的室温条件下,烯烃的氧化非常慢,而在超声的作用下,促进了反应中间体环状锰酸二酯的分解,使整个反应速度加快。
  3总结
  超声技术在实验室的应用已经很广泛,但在化工生产中的应用技术尚未十分成熟,在实际应用中还有一些需要解决的技术和装备问题。因为声化学效应的不稳定性,以及声化学主要机制----声空化没有统一定量表述,目前难以概括声空化的具体规律。很多声化学研究者都是以化学效应为目的,只把声作为一种手段或者辅助方法来进行研究。声化学和物理学以及物理化学有着密切的关系,广义的说声化学属于物理学或物理化学。
  目前超声波提取技术主要用在小型实验室或小规模生产设备,要用于大规模的工业生产,要运用大型超声设备及其配套装备,要解决有关工业设备放大的难题,涉及到成本和工艺技术问题。尽管如此,超声技术在化学化工相关领域的应用,其实用价值已经得到了充分证明,随着技术的不断开发,其应用前景必定是广阔的。
  作者简介:
  李巨超,男,广西平乐县人,河池学院化学与生命科学系高级实验师,研究方向:无机及分析化学实验,现代教育技术。
【对“超声技术在提取工艺和有机合成中的应用”发布评论】

版权及免责声明:
① 本网站部分投稿来源于“网友”,涉及投资、理财、消费等内容,请亲们反复甄别,切勿轻信。本网站部分由赞助商提供的内容属于【广告】性质,仅供阅读,不构成具体实施建议,请谨慎对待。据此操作,风险自担。
② 内容来源注明“硅谷网”及其相关称谓的文字、图片和音视频,版权均属本网站所有,任何媒体、网站或个人需经本网站许可方可复制或转载,并在使用时必须注明来源【硅谷网】或对应来源,违者本网站将依法追究责任。
③ 注明来源为各大报纸、杂志、网站及其他媒体的文章,文章原作者享有著作权,本网站转载其他媒体稿件是为传播更多的信息,并不代表赞同其观点和对其真实性负责,本网站不承担此类稿件侵权行为的连带责任。
④ 本网站不对非自身发布内容的真实性、合法性、准确性作担保。若硅谷网因为自身和转载内容,涉及到侵权、违法等问题,请有关单位或个人速与本网站取得联系(联系电话:01057255600),我们将第一时间核实处理。
广告
相关
·基于视频会议终端QoS(服务质量)技术方案探析
·硅谷网学院:无线网络通信技术的设计及实现
·硅谷网学院:计算机数据库入侵检测技术思考
·硅谷网学院:独立学院软件技术基础课程教学探索
·硅谷网学堂:使用VMWare技术可否实现DHCP服务?
·电脑知识与技术:概念图的网站导航应用探讨
·语音自动处理技术与组织机构代码系统的研究设计
·在电子商务专业课程改革中 怎么做HTML5技术的授
头条
硅谷网解密:4G网络中的微波传输解决方案 硅谷网解密:4G网络中的微波传输解决方案
在2013年12月4日,工信部向中国移动、中国联通、中国电信颁发TD-LTE(4G)经营许可之后……
·硅谷网解密:4G网络中的微波传输解决方案
·创意产业的批量化规律 工业造型方法论之加减
·《硅谷》杂志:浅谈电信运营商开展IPTV业务
·《硅谷》杂志:新型桌面搜索关键技术的研究与
·硅谷杂志:基于时间技术的搜索引擎排名算法
图文
佳惠安抗菌喷剂敷料杀(抑)菌临床检验结论
佳惠安抗菌喷剂敷料杀(抑)菌临床检验结论
利用重力势能做功发电介绍和势能输出系统介绍
利用重力势能做功发电介绍和势能输出系统介
佳惠安抗菌喷剂敷料杀(抑)菌临床检验结论
佳惠安抗菌喷剂敷料杀(抑)菌临床检验结论
利用重力势能做功发电介绍和势能输出系统介绍
利用重力势能做功发电介绍和势能输出系统介
最新
·佳惠安抗菌喷剂敷料杀(抑)菌临床检验结论
·利用重力势能做功发电介绍和势能输出系统介绍
·李磊:新时代下电网调度自动化技术的发展分析
·提升企业竞争力以及企业人力资源管理优化思考
·《硅谷》杂志:采油分层测静压工艺技术浅究
热点
·判断连续时间系统的线性非时变性和因果性
·3DMAX+Vary室内漫游动画制作的技法浅析
·长期使人困惑的问题:TCP连接中断的实时检测
·佳惠安抗菌喷剂敷料杀(抑)菌临床检验结论
·关于汽轮机油系统失火原因分析及防范措施的一
旧闻
·博物馆数字化展示应用研究
·硅谷杂志:云计算在飞行试验数据处理中的探索
·硅谷杂志:关于网络安全解决方案的探讨
·探讨气体检测中如何应用数字信号处理技术
·徐海:智能变坡水槽控制系统的设计与实现
广告
硅谷影像
佳惠安抗菌喷剂敷料杀(抑)菌临床检验结论
佳惠安抗菌喷剂敷料杀(抑)菌临床检验结论
利用重力势能做功发电介绍和势能输出系统介绍
利用重力势能做功发电介绍和势能输出系统介绍
公关负责人离职背后:危机公关案例分析
公关负责人离职背后:危机公关案例分析
硅谷网解密:4G网络中的微波传输解决方案
硅谷网解密:4G网络中的微波传输解决方案
使用Autoit脚本在虚拟内存盘设置考试模拟系统
使用Autoit脚本在虚拟内存盘设置考试模拟系统
探秘开滦集团设备租赁管理系统的设计和实现
探秘开滦集团设备租赁管理系统的设计和实现
关于我们·About | 联系我们·contact | 加入我们·Join | 关注我们·Invest | Site Map | Tags | RSS Map
电脑版·PC版 移动版·MD版 网站热线:(+86)010-57255600
Copyright © 2007-2020 硅谷网. 版权所有. All Rights Reserved. <京ICP备12003855号-2>